Processing math: 100%

সমতলে ভেক্টরের অংশক

একাদশ- দ্বাদশ শ্রেণি - উচ্চতর গণিত উচ্চতর গণিত – ১ম পত্র | - | NCTB BOOK
624
624

সমতলে ভেক্টরের অংশক বলতে বোঝানো হয়, একটি ভেক্টরকে x-অক্ষ এবং y-অক্ষ বরাবর বিভক্ত করা। সমতল বলতে ২-মাত্রিক স্থান বোঝানো হয়, যেখানে একটি ভেক্টরকে i এবং j একক ভেক্টরের মাধ্যমে প্রকাশ করা হয়। x-অক্ষ বরাবর অংশককে x-অংশক এবং y-অক্ষ বরাবর অংশককে y-অংশক বলা হয়। এই অংশকগুলো ভেক্টরের প্রকৃত দিক এবং মান নির্দেশ করে।


সমতলে ভেক্টরের উপস্থাপন

ধরা যাক, একটি ভেক্টর A, যা x-অক্ষ বরাবর Ax এবং y-অক্ষ বরাবর Ay মান রাখে। তাহলে ভেক্টর A কে x এবং y-অক্ষ বরাবর বিভক্ত করে প্রকাশ করা যায়:

A=Axi+Ayj

এখানে,

  • Ax: ভেক্টরের x-অংশক বা x-অক্ষ বরাবর অংশ।
  • Ay: ভেক্টরের y-অংশক বা y-অক্ষ বরাবর অংশ।
  • i: x-অক্ষ বরাবর একক ভেক্টর।
  • j: y-অক্ষ বরাবর একক ভেক্টর।

উদাহরণ

ধরা যাক, একটি ভেক্টর A, যার x-অংশক 4 এবং y-অংশক 3। তাহলে ভেক্টর A প্রকাশ করা যাবে:

A=4i+3j


মান (Magnitude) নির্ণয়

ভেক্টর A-এর মান বা দৈর্ঘ্য নির্ণয় করতে হলে, আমরা পাইথাগোরাস তত্ত্ব ব্যবহার করি:

|A|=A2x+A2y

এই উদাহরণে,
|A|=42+32=16+9=25=5

অতএব, ভেক্টর A-এর মান বা দৈর্ঘ্য হলো ৫।


দিক নির্ণয়

ভেক্টরের দিক নির্ণয় করতে হলে আমরা tanθ=AyAx সূত্র ব্যবহার করতে পারি, যেখানে θ হলো ভেক্টরের x-অক্ষের সাথে কোণ। উদাহরণস্বরূপ:

tanθ=34
θ=tan1(34)36.87


সারাংশ

সমতলে একটি ভেক্টরকে x-অংশক ও y-অংশক হিসেবে ভাগ করা যায়, যা i এবং j একক ভেক্টরের মাধ্যমে প্রকাশ করা হয়। এই উপায়ে ভেক্টরের মান এবং দিক উভয়ই নির্ণয় করা যায়, যা সমতলে ভেক্টরের নির্দিষ্ট অবস্থান নির্দেশ করতে সাহায্য করে।

Promotion